Lesch-Nyhan Disease (LND) Fact Sheet

Alternative names: Historically, Lesch-Nyhan syndrome has been used. Lesch-Nyhan Disease (LND) and hypoxanthine-guanine phosphoribosyl transferase (HPRT) deficiency are most commonly used to describe this disease.

First description: The first description of Lesch-Nyhan Disease may very well have been in the year 1267. Beck (Euro J of Ped Surg 1991) identified an original description of what is most probably LND when he uncovered cases of self-injury, gout, and mental retardation in individuals living in a small village in England where St. Thomas, Archbishop of Canterbury, had been killed. The original account was written by Jacobus de Voragine from secondary sources (Golden Legend). Incidentally, de Voragine thought the origin of the disease might somehow be related to the murder of St. Thomas and the “wrath of God”. More recently, in 1959, two physicians, Catel and Schmidt, described what has turned out to be the first variant of the disorder of partial HPRT deficiency (Kelley-Seegmiller syndrome) which, in turn, involves a variable degree of neurological symptoms without the self-injurious behavior of LND. The enzyme defect was discovered by Seegmiller in a patient with partial deficiency of HPRT in 1967. In 1960 Riley described gout and cerebral palsy in a 3 year old that appears to be a classic case of LND. Riley, a pediatrician in Glasgow, cared for children with developmental disabilities at a time when such clinics were not common. Commonly accepted as the first description of the familial nature of the disease was by Nyhan and Lesch who published data in 1964 on two brothers with LND in the American Journal of Medicine 36, 561 –570. Nyhan followed up this first article with a second article in 1965, A familial disorder of uric acid metabolism and central nervous system function in J of Pediatrics, 257 – 263. Hoefnagel et al, in 1965, were the first to suggest it was X-linked. In 1983, Wilson and Kelly identified the first specific mutation at the molecular level: a single nucleotide change in the codon for aspartic acid 193 -- GAC for AAC. This was the first of many different nucleotide changes identified in this gene.

Incidence: This is a rare disorder that has an accepted incidence of about 1:380,000.

Genetic aspects: Lesch-Nyhan Disease (LND) is a rare X-linked, recessive genetic disorder of purine metabolism associated with cognitive impairment, hyperuricemia, renal involvement, and the hallmark symptom of severe and involuntary self-injurious behaviors. The disease involves the near absence of the enzyme HPRT. There are probably a few thousand individuals with this disease in the world. The mutation is in the HPRT1 gene located on the long arm of the X chromosome. Remarkably, 218 different mutations have been identified in 271 different families (O’Neill). The product of the normal gene is the enzyme hypoxanthine-guanine phosphoribosyl transferase (HPRT) which recycles purines from DNA and RNA. Even though there are many different types of mutations that affect this gene, the outcome is always a very low level of the enzyme. Because it is an X-linked recessive mutation, it generally occurs only in males, but there have been several documented cases in females thought to be a consequence of events explained by the Lyon Hypothesis. Because of the lack of this enzyme, there is an over-production of uric acid which leads to the production of uric acid (and Xanthine) renal stones. Unfortunately, treatment of the high serum uric acid with allopurinol does not have an impact on...
the neurobehavioral manifestations of the disease but does minimize renal injury.

Physical phenotype: The motor syndrome found in LND is best described as dystonia superimposed upon hypotonia, although chorea, spasticity and athetosis have been described. During volitional movements, the examiner may believe increased tone is present, yet when the movement is over or when the patient is relaxed, hypotonia is clearly evident. Anxiety often confuses the clinical picture, as it does with other aspects of the disorder, especially when the patient is examined by a physician unfamiliar with the patient. The question of the presence of athetosis vs dystonia and the presence of hypotonia vs spasticity is often difficult to distinguish on exam by a physician who is not familiar with the behavioral manifestations of LND. LND presents in the first few months of life as a developmental delay and may be diagnosed initially as cerebral palsy. Interestingly, if CP is defined as a non-progressive movement disorder, LND could then be classified as a dystonic form of cerebral palsy with hypotonia. Affected individuals are generally non-ambulatory. The basal ganglia is now known to be involved in the regulation of areas other than the motor circuits. Personality, cognition, emotion as well as movement are all potentially regulated by the basal ganglia. Visser, Bar, and Jinnah have reviewed in depth the involvement of the basal ganglia in LND.

Cognitive aspects: Although there may be significant bias and scatter, depending on who administers the IQ testing, the range of IQ scores varies but is generally in the mild to moderate mentally retarded range although some authors feel that it is lower, ranging from 40 to 80. The LND behaviors and neurological problems limit the validity of standard IQ tests. Patients with LND can be very engaging and personable and are often able to recount scores of local sporting events on a routine basis. It is interesting that parents often believe that the IQ scores obtained by professionals are artificially low and reason that low performance is secondary to LND behavior.

Behavioral aspects: The behavioral phenotype of Lesch-Nyhan Disease, physical and emotional self-injury, including severe self-mutilation and aggressive behavior, are generally involuntary in nature. The self-injurious behavior is not under the patient’s control nor does the patient desire it. These self-destructive behaviors usually begin between ages three and six and often escalate as the patient ages and the patient is more physically able to cause self-injury. The first manifestations of physical self-injury are lip biting, finger biting, and biting of the oral cavity. Modes and patterns of self-injury have been previously described in Robey et al, and are often specific to each individual patient and appear consistent over the life-span. Patterns of association involve self injury to or about: 1) external surfaces or 2) oral or biting, usually of the lips and fingers. If a patient tends to injury him or herself using external surfaces, this pattern tends to continue throughout the life-span. If the self-injury involves oral cavity or biting, then this pattern will reoccur throughout the life-span. Patterns of self-injury include eye-poking, head banging, fingers in wheelchair spokes, and extension of arms in doorways. Emotional self-injury, or outwardly directed aggressive behaviors, include hitting, kicking, head-buttting, biting others, spitting, swearing, ethnic slurs, inappropriate remarks to the opposite sex, frequently changing opinions, and/or lying.

Treatment: Treatment for the behavioral manifestations of LND is multi-modal and should include: 1) judicious use of protective devices, 2) utilization of a behavioral technique commonly referred to as selective ignoring with redirection of activities, and 3) occasional use of medications. The use of medications for treating the behavioral component of this disorder is controversial yet most children and adults with LND are treated with different medications. No medication has been found to reverse the so-called ‘Lesch-Nyhan behaviors’, either motor or behavioral. Selective ignoring is a methodology that is designed to extinguish self-destructive emotional or physical behavior in the LND patient. It requires the caretaker to ignore such behavior by the LND patient towards said caretaker so that the behavior decreases or ceases. Along with selective ignoring, the use of redirection is also found to be helpful. At times
controversial, the use of protective devices is essential, yet often problematic for patients and institutions not familiar with the care of LND patients. Professionals unfamiliar with LND may perceive the use of these protective devices from a traditional paradigm of restraints -- which is to say, the use of these devices against a patient’s will. When protective devices are requested by the patient -- and used to safeguard the patient from him or herself -- the outcome is an extraordinary feeling of comfort and safety. Not allowing the use of protective devices would violate the autonomous rights of the patient. In Lesch-Nyhan Disease self-injury far exceeds that associated with other developmental disabilities and is a consequence of the neurotransmitter abnormality characterizing the disorder. Although not all individuals with this condition demonstrate severe behavioral manifestations, it is reasonable to say that all benefit from the use of protective devices at some point during their lifetime.

Recently, Deep Brain Stimulation (DBS) has been tried with several patients with LND in Japan and Switzerland/France. In this procedure neurosurgeons place two stimulators in the basal ganglia and the results seem positive according to parents of the children. A decrease in dystonic movements as well as a decrease in self-injurious behavior has been identified. More research needs to be carried out before this expensive procedure can be routinely recommended.

Life expectancy: Life expectancy is a difficult issue to address as the extent of the associated clinical conditions of Lesch-Nyhan Disease has not yet been fully characterized. Fortunately, due to the use of allopurinol, which acts as a substrate for xanthine oxidase, patients with this disorder no longer die of renal complications. There is a suggestion that some patients may die suddenly in their twenties and thirties possibly as a consequence of an unexplained neurologi cal event.

Key references:
Visser, JE, Bar, PR, and Jinnah, HA. Lesch-Nyhan Disease and the basal ganglia. Brain Research Review 32 (2000) 449-475

(see: http://www.ssbp.co.uk)
(Prepared by Gary E. Eddey, MD Matheny Medical and Educational Center, Matheny School and Hospital, garyeddey@matheny.org)